Sub-pixel Land Cover Classification Using Support Vector Machines
نویسندگان
چکیده
Over the last few years, support vector machines (SVMs) have shown a great potential as classifiers for remotely sensed data. Generally, these have been used to perform conventional hard classification where each pixel is allocated to only one class. Remote sensing images, particularly at coarse spatial resolutions, are contaminated with mixed pixels that contain more than one class on the ground. Hard classification process may result in erroneous classification of images dominated by mixed pixels. Therefore, sub-pixel classification approaches that decompose the pixel into its class constituents in the form of class proportions have been advocated. In this paper, we propose a SVM based algorithm for sub-pixel land cover classification. The proposed SVM based algorithm uses probability estimates for multiclass classification by pairwise coupling. The algorithm is employed to produce sub-pixel land cover classification from a Landsat ETM+ image. Classification accuracy achieved is assessed using three measures, namely, the overall accuracy obtained from a fuzzy error matrix, the squared correlation coefficient, and the root mean squared error. The results are compared with the posterior probabilities derived from the maximum likelihood classifier (MLC) and the fuzzy classification based on MLC. Our experiments show that accuracy obtained from the proposed algorithm is significantly higher than the two bench-marked classifiers. Thus, the outputs from SVM based algorithm can be used to reflect the actual class composition of the pixels on ground.
منابع مشابه
Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملDevelopment of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data
Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...
متن کاملIntegrating Object-based Classification with One-class Support Vector Machines in Mapping a Specific Land Class from High Spatial Resolution Images
Remote sensing techniques have been commonly used to map land cover and land use types. For many applications, users may only be interested in a specific land class in an image such as extracting urban areas from an image, or retrieving dead trees from a forest. This could be referred to as a one-class classification problem. In addition, with the increasing availability of high spatial resolut...
متن کاملEnsemble Classifiers for Land Cover Mapping
not been submitted before for any degree or examination in any other University. Abstract This study presents experimental investigations on supervised ensemble classification for land cover classification. Despite the arrays of classifiers available in machine learning to create an ensemble, knowing and understanding the correct classifier to use for a particular dataset remains a major challe...
متن کامل